
Agent-Oriented Material Flow Control System Based on DCOM

Dr. Ronald Schoop
Ralf Neubert

Schneider Automation GmbH
Development Central

Steinheimer-Stasse 117, 63500 Seligenstadt, Germany
Email: ronald.schoop@modicon.com, ralf.neubert@modicon.com

Abstract

This paper reports on the design and realization of an
agent-oriented control system dedicated for material
flow systems. The implementation is based on DCOM
(Distributed Component Object Model). Regarding the
increasing availability, performance and acceptance of
distributed object-oriented systems as well as the
growing number of agent-oriented software it is natural
to adapt and use the capabilities of both object-oriented
and agent-oriented software as a platform for distributed
industrial applications.

1. Introduction

Today’s transferlines are producing workpieces (e.g.
cylinderheads, engines) at a high production rate, but
with enormous limititations:
- the availability of the whole system is poor because

of the fixed in-line arrangements of the machines,
- the design of a line is dedicated for a specific type

of workpiece only and
- extensions and modifications are very expensive.

The basic idea is to use general machines with redundant
manufacturing profile and to supply these machines with
workpieces via a flexible material flow system. Any
workpiece has now multiple choices for manufacturing.
If a machine is failed, another can take the job over.

A conventional material flow pre-planning wouldn’t be
able to manage all the possibilities at production time.

What is needed is a control system, which
- is strictly object-oriented to handle the complexity

of the system (thousands of workpieces and dozens
of machines)

- uses the capability of autonomous and robust
behavior in order to handle failures of a sub-system
without further impact to the overall system.

The aim of this paper is to describe the basic architecture
of the designed control system, to focus on some
relevant implementation aspects and to draw finally
conclusions based on experiences on real shop floor
manufacturing.

2. Requirements

The agent-oriented production system requirements are:
- robust behavior (of communication and algorithm)

of software components based on Windows NT 4.0
platform with DCOM,

- flexible transportation system (easy to reconfigure
and to extent),

- higher availability of production system compared
to conventional transferlines,

- handle failures of a sub-system and guarantee a
production rate and

- manufacture different types of workpieces
simultaneously.

3. Architecture

In co-operation with DaimlerChrysler AG an agent-
oriented production system was designed. It‘s based on
agent system specification by DaimlerChrysler AG
Research and Technology, Berlin – Germany [1].

3.1. Software design

During design phase the auction-based, agent-oriented
system passed through incremental steps of
simplification.

Starting point was a mobile agent platform based on
JAVA . To simplify the architecture of common mobile
agent systems and to consider the fixed arrangement of
the production system as well, the system was re-
designed with static, non-mobile agent components.

A limited subset of interactions was defined during the
next step of design. Interactions are often described with
languages like KQML (Knowledge Query and
Manipulation Language) [2] and usually processed by an
event handler [3].

In fact the use of a mobile agent platform (JAVA /
CORBA – Common Object Request Broker
Architecture) for unknown areas (e.g.: internet search)
was not absolutely essential caused by the good
knowledge of the production system design and the
strong relation of the components to the fixed shop floor
environment and topology. Without the need for a
JAVA-based mobile agent platform and a JVM (JAVA
Virtual Machine) an object model based on DCOM [4]
fits well. Fig. 1 shows the derived agent architecture.

Finally, the subset of interactions were described as set
of methods provided by various agent objects.

Figure 1 Simplified Agent Architecture

3.2. Component oriented design

The agent-oriented system consists of several PC- and
PLC- (Programmable Logic Controller) based agents
(see figure 2).

Agents are assigned to system components like
machines or shift tables. This document is aimed to the
PC-based components mainly.

Every agent controls its corresponding mechanical
component (e.g.: shift table) autonomously. For any
agent type a specific COM module (DLL) encapsulates

the algorithm (behavior). This behavior module is
linked at runtime to a DCOM-based communication
framework (see figure 3), which provides a remote
Agent Method Interface (AMI) for interactions.

... ...

Ethernet

CNC

Workpiece
Control

PLC
Conveyor
 Control

Machine
Control

Shift Table
Modular
Machine

Shift Table
Agent

Machine
Agent

PLC
Program

PLC
Program

CNC
Program

IPC

Workpiece
Agent

... Data
Base

Server
Ethernet TCP/IP

Figure 2 Agent System View

The idea of separation the algorithm and
communication allows the use of an unique framework
for different agent types (DLLs), to build a
preprocessed algorithm- and communication-related
fault-detection (agent-type independent) and to keep
small and reliable DLLs for different algorithm as well
as a low software maintenance effort.

Figure 3 software architecture at
 component level

The AMI provides invocation and confirmation
methods. An interaction (remotely or locally) between
agent objects is formed by calling an invocation method
and its corresponding confirmation method for the
asynchronous result of the interaction (e.g.: invocation
method “Request” with confirmation method
“RequestConfirm”).

Interaction control

Behavior
Script

Event
handler

Behavior
Script

Behavior
Script

DLL

Remote
calls
(DCOM)

Communication framework (NT service)

AMI

Internal
calls
(COM)

Algorithm

In case the invocation method would be handled
synchronously at runtime the calling object has to wait
until the method returns the result. If a remote call fails,
the result will be received after a timeout, which is
handled by DCOM.

In order to create a more robust asynchronous behavior
regarding the desired level of fault-tolerance, an
interaction is separated into invocation and confirmation
method.

A remote call will be handled by the AMI. If a self-
defined timeout occurs, the algorithm will be informed
by the framework. There’s a distinct improvement if a
caller object has the possibility to go on in case of an
error and to switch interactions before a DCOM-handled
timeout occurs.

The algorithm object is build by some threads
representing each type of agent. Therefore an agent can
proceed several interactions for various workpieces
simultaneously at runtime.

The flexible material flow system requires several
interactions like ‘requesting offers’, ‘ordering jobs’,
‘creating transportation requests’ etc. described as state
charts. AMI-methods are linked to these interactions to
comply with this requirements. Some steps could be
critical or non-critical. Critical steps are necessary for
algorithm. Therefore transitions can be defined. In order
to enable such a transition in the state chart, the
corresponding confirmation has to be received.
Otherwise an alternative interaction or state chart will
be selected. For non-critical steps or interactions
transitions are enabled always.

4. Results and related works

The system has shown a robust and redundant behavior
during common shop floor manufacturing as well as
performance tests regarding an increased availability.

Different types of workpieces where processed
simultaneously (chaotic manufacturing).

The benefit is obvious regarding the handling of sub-
system failures.

The availability of conventional transferlines collapses in
case of an error caused by the fixed sequential
arrangement of the machines. Machines after the
defective equipment running empty. On the opposite site
of the failed machine the manufacturing system goes
overfilled and stops.

Figure 4 illustrates why the agent-oriented
manufacturing system overcomes failures of sub-
systems: Machine #2 fails (e.g.: broken tool) in mid day.
Running interactions of the responsible machine agent
are switched by a workpiece agent to other machine
agents (machine #3 and later machine #1). These are
taking over and sharing the current jobs subsequently if
they are providing the right handling scope like drilling
or milling. A lower production rate remains guaranteed
compared to a conventional transferline. For that reason
the availability of the overall system is higher.

The Specifications and simulations done by
DaimlerChrysler AG are proved now under real shop
floor conditions. A complete manufacturing system
controlled by auction-based agent-oriented software
components [5] is running without any problems since
September 1999 – as far as we know the worldwide first
agent-controlled transfer line. The results of the
prototype installation are corresponding to the
simulations and expectations.

5. Conclusions

A static, non-mobile agent-oriented software based on
Windows NT and DCOM can be a possible solution for
industrial manufacturing applications. In order to build
autonomous sub-components the object-oriented
composition of a production system has to be dedicated
to its mechanical components as well as the desired
behavior of the specific component. Agent-based
technology fits best to this.

4:00
PM

5:00
PM

6:00
PM

7:00
PM

8:00
PM

time

Machine 1

Machine 2

Machine 3

0
2
4
6
8

10

12
14
16
18
20

6:00
AM

7:00
AM

8:00
AM

9:00
AM

10:00
AM

11:00
AM

12:00
PM

1:00
PM

2:00
PM

3:00
PM

Figure 4 redundant behavior

The usage of an unique communication framework (NT
service) and encapsulation of algorithm into type-
specific modules (DLL) allows to extend and to migrate
the agent software more easier.

The framework extends the DCOM platform and
provides features like a user-defined level of fault-
detection at application layer.

Regarding the limited set of interactions within the fixed
arrangement of the manufacturing system and the
restricted degree of freedom of its components as well, a
modification of the behavior can be realized by an pre-
compiled and exchangeable set of instructions.

Based on the results and experiences different fields of
applications are conceivable (e.g.: assembly lines) for
agent-oriented software systems in future.

For industrial purposes a description of the components
behavior as state charts or function blocks could be done
by using standards like IEC (International Electro-
technical Commission) 61499-1 [6].

Further, agent-based software gives the opportunity to
realize holonic systems [7] in general.

6. References

[1] Sven Brückner, Stefan Bussmann, Klaus Schild, and
Harald Windisch, Grobspezifikation des
Agentensystems im Prototypen. Technical report,
DaimlerChrysler AG, Berlin/Germany, 1998.

[2] J. Weber, T.Finin, et al. Specififcation of the kqml
agent communication language (draft). Technical report,
The DARPA Knowledge Sharing Initiative, 1993.

[3] A.T.M. Aerts, M. Dalmeijer, and D.K. Hammer,
Mobile agent architectures: What are the design issues?
In Proceedings of the Engineering of Computer
Based Systems (ECBS), 1998.

[4] Eddon, Guy, and H. Eddon. Inside Distributed COM.
Redmond, WA: Microsoft Press, 1998.

[5] S. Bussmann, and K. Schild, "Self-Organizing
Manufacturing Control: An Industrial Application of
Agent Technology", to appear in Proceedings of
The Fourth International Conference on Multi-Agent
Systems (ICMAS ’2000), Boston, 2000.

[6] IEC CDV 61499-1, Function Blocks for Industrial-
Process Measurement and Control Systems Part 1 -
Architecture, 1999.

[7] S. Bussmann, and D. McFarlane, Rationales for
holonic manufacturing control. In Proceedings of the 2nd

Int. Workshop on Intelligent Manufacturing Systems,
1999.

